Comparative Transport of Legionella and E. coli through Saturated Porous Media in a Two-Dimensional Tank

ABSTRACT

This study investigated bacterial transport in a two-dimensional (2-D) tank to evaluate the bacterial behavior of Legionella pneumophila as compared to Escherichia coli under saturated flow to simulate aquifer conditions. The experiments were performed in a 2-D tank packed with 3700 in3 (60,632 cm3) of commercially available bagged play sand under saturated conditions. The tank was disinfected by backwashing with 10% chlorine solution and subsequently neutralized by backwashing with tap water containing sodium thiosulphate (Na2S2O3) to ensure no chlorine residual. Bacterial transport was measured using samples collected from ports located at vertical transport distances of 5, 15 and 25 inches (12.7, 38.1 and 63.5 cm, respectively) below the sand surface along two vertical sections in the tank. An influent concentration of 105 CFU/mL was used for bacterial cells and the vertical fluid transport rate was 10.3 in/day (26.2 cm/day), controlled using a peristaltic pump at the bottom outlet. Legionella breakthroughs were recorded at 8, 22 and 35 h for the ports on the right side and 9, 24 and 36 h for the ports on the left side, at 5, 15 and 25 inch depths, respectively. At the same depths, E. coli breakthroughs were recorded at 5, 17 and 30 h for the ports on the right side and 7, 19 and 31 h for the ports on the left sides. The delay in Legionella transport compared to E. coli is homologous to Legionella’s pleomorphic nature. This study provides evidence of the mobility of both E. coli and Legionella in saturated aquifer conditions at a scale more representative of actual aquifer conditions. This study also provides a substantive basis for the premise that cell characteristics affect transport characteristics under those conditions.

Some Important results

Transport of E.coli and Legionella in a saturated acquifer

While it is accepted that E. coli is mobile in saturated aquifer environments, the scale of this study provided a basis for the premise that Legionella is also mobile in saturated aquifer conditions. In addition, data from this study suggested that microbial cell types and characteristics in conjunction with aquifer characteristics might have impacted the transport of those pathogens. Legionella’s pleomorphic nature and/or the differences in the LPSs on cell surfaces, which may result in reversible or irreversible attachment of the Legionella cells to the media of the tank, may both have affected its transport properties. Further, vadose zone conditions are typically heterogeneous, ranging from the micro to the macro scale, which can lead to preferential transport affecting dispersion in both the lateral and vertical directions.